
w

N91-10617

Representing Object Oriented Specifications and Designs

with Extended Data Flow Notations

Jon Franklin Buser) (_i : , _.

Paul T Ward

Abstract

This paper addresses the issue of using extended data
flow notations to document object oriented designs

and specifications. Extended data flow notations, for
the purposes of this paper, refer to notations that are
based on the rules of Yourdon / DeMarco data flow

analysis. The extensions include additional notation

for representing real-time systems as well as some

proposed extensions specific to object oriented
development. The paper will state some advantages

of data flow notations, investigate how data flow
diagrams are used to represent software objects,

point out some problem areas with regard to using
data flow notations for object oriented development,

and propose some initial solutions to these problems.

Introduction

Data flow diagramming is a general graphic-based

modeling notation that has gained wide industry ac-

ceptance as a software specification and design tool.
The proponents of object oriented techniques claim

that systems built using these techniques have a

natural system architecture that allows easier system

modification and software component reuse. The

authors support a method of system building that
follows an object oriented development strategy and
uses extended data flow notations to document the

specification and design. There are many reasons for
using data flow notation as the documentation
medium:

The notation is supported by a large number

of Computer Aided Software Engineering
(CASE) tools.

Data flow models are not specific to any par-

ticular computer language, operating system,

or hardware configuration making the neces-
sary investment in training and tools useful

over a wide spectrum of projects.

Data flow modeling has a relatively long

and successful record within the computer
industry; many software engineers already

have a working understanding of the nota-
tion.

Data flow diagrams use circles to represent

processes, or units of work within a system, and
arrows to represent data that is supplied to and
produced by the processes 1. Data Flow diagrams

can be used for modeling general problem
domains. These domain models are then evolved

into software system specifications and designs.

Figure 1 is a data flow diagram describing a Data
Storage and Reporting System. The system

produces reports on stored data and has a menu
driven user interface for adding and updating

records. A complete specification for the system

would also include a detailed description of each

process explaining how it will produce its output
given the input data supplied. The Ward / Mellor 2

and Boeing / Hatley 3 real-time extensions intro-

duce additional graphic symbols that are used to

integrate finite state machine logic into the model.
These state machine models strictly define the

relationship of operations within a model and can
potentially be executed to demonstrate the cor-
rectness of the model.

Object Oriented Partitioning

One of the key features of a data flow model is that

it may be partitioned and leveled. This means that

a number of processes can be grouped together

into a single higher level process that represents
the combined operations of the lower level

processes. The highest level diagram in the model
(the context diagram) represents the system as a

single process and uses rectangular boxes to rep-

resent entities that are external to, but interact

with, the system being modeled. Figure 2 is a

J.F. Buser

Software Development Concepts
1 of 22

 nus

l

Stored Data

port

Data

_uro 1

context diagram for the Data Storage and Reporting
System.

Traditionally, data flow models have been parti-
tioned by using a strategy called functional decom-

position. This is a top down method that identifies
high level system functions and then details, at the

next level of the model, what processes will be re-

quired to perform each function. This process is

repeated until all of the system's primitive com-
ponents have been identified. Figure 3 shows a pos-

sible functional partitioning of the Data Storage and

ystem
ser

Data
Menus I D_taaqel

Reports \ Report /

Figure 2

J.F. Buser

Software Development Concepts
2 of 22

Reporting System. The system is partitioned into

two sub-systems: one for managing data input and

the other for data reporting. Both sub-systems
have direct access to the data store.

There are other partitioning methods. One alter-

nate strategy groups together processes that are
parts of the response to a given external event.

Another organizes the model so that the number

of data flows between the higher level processes

are minimized. The choice of system partitioning
is important because it will define the major sub-

system interfaces and, in the case of large software

projects, it will probably define the management
structure of the organization that builds the sys-
tem.

Object oriented specifications are produced by

changing the criteria used when partitioning the

model. With the help of information modeling
techniques, classes of real world objects are iden-

4
tiffed in the problem domain . Then the data flow
model is partitioned by grouping together the

processes associated with each object or class. In
the case of the Data Storage and Reporting Sys-

tem we will identify a user interface object, a

report object, and a data store object. These
specification objects may be useable directly as

User

Input

Menus

Data

Records

I Data

I Records

Stored Data

rts

Figure 3

design objects, or they may have to be modified to
transform them into design objects (e.g., to meet

system performance constraints). These design ob-
jects can then be implemented as information hiding

modules or Ada packages.

Data Flow Problems

We have found the object oriented partitioning
strategy useful, however some of the rules governing

traditional data flow diagrams and the CASE tool
implementations of these rules conflict with object

oriented goals.

One goal of object oriented design methods is to
identify reusable objects. These objects may be
reused within the same model or in different but

related problem domains. Many of the CASE tools

have a problem with regard to reusing these objects
in the same model because the CASE tools typically

enforce that all processes have unique names. If we
want a process to be reused within a single model,

naming conventions have to be devised to specify that

different instances of the process are really the same.
Of course, without additional tool support it is im-

possible to prevent different instances of each object

from being modified so that they are no longer the
sanle.

Another problem is that objects designed with reuse

in mind will often be built in a more general manner

than ones that have been engineered for a specific
use. The result of this is that all of the object's

access functions or methods may not used in a

specific instance of the object. One of the primary
model validation criteria applied to data flow

diagrams is that all of the input and output flows
entering a process must exist in the lower level

description of the process. The existing CASE

tools will report errors when general reusable

objects are used in a model that does not make use

of all the object's capabilities. For example, a

Data Key

_rd Field IDatard

u 4

J.F. Buser

Software Development Concepts
3 of 22

New _

Record/_

/ \\

I Data
Store

Obj ect

/
//

Update
Record

Read

Record

Add New Record =

Input Key + Input Data Record

Update Record =

Input Key + Input Data Record

Read Record =

Input Key + Output Data Record

I/gore 5 Figure 6

more general data store object for the Data Storage
and Reporting System might have a process for delet-
ing records from the store. If this object is instan-

tiated in an application that does not require a delete
capability the analysis routines in the current CASE

tools will report an error. To successfully level-
balance the model, the delete process and its as-
sociated flows will have to be removed. A CASE tool

designed to support importation of reusable objects
must have a facility for deactivating specific access
routines.

$
UIO.
Terminal l

Interface

DSO.
Add
New
Record

J.F. Buser

Software Development Concepts
4 of 22

RO.
Produce

Report

DSO.

Update
Record

Representing Access Functions

Data flow models can be partitioned so that

processes are grouped together in an object
oriented fashion. The rules of data flow notation

also allow data flows to be grouped together. This

is commonly done to reduce the clutter of data

flows entering and leaving higher level processes.

We propose that the data flows should be grouped
together so that all of the input and output

parameters of each access routine are combined,

DSO.
Read
Record

>/ Report

DSO.
Read
Record

I Store _--_

Figure 7

andthatthecombinedflowisnamedfortheaccess
routinethatit represents.If thisapproachis not
followedit is impossibleto determinewhichdata
flowsoperatetogether.Figure4showsthedatastore
objectfromtheDataStorageandReportingSystem.
Noticethatallinformationthatcorrelatesinputand
outputdatawithspecificobjectcapabilitieshasbeen
lost. Comparethisto figure5 whichgroupsthe
object'sinputandoutputflowstogetheraccordingto
whichaccessroutinetheyareassociatedwith.Infor-
mationabouttheobject'saccessroutinesis now
retained.Figure6showsthecompositionoftheeach
oftheflowsfromfigure5.

SomeCASEtoolsallow a data flow to have arrows

on both ends indicating a two way flow of informa-

tion. We suggest that this is a useful convention for

representing flows that have both an input and output
component. This notation is not completely adequate

though, because it will not be clear from this diagram

which object is using the other. This problem could

be alleviated by introducing a new graphic symbol to
indicate the direction of these combined flows or by
applying naming conventions. One naming conven-

tion could name the flow by concatenating the objects
name with the access function name, another conven-

tion could specifY whether a particular flow com-
ponent was an input or output (e.g., "input data
record" as opposed to just "data record"). Figure 7

shows how the data store object integrates with the

rest of the Data Storage and Reporting System using
the double arrow head convention.

Future Work

Data flow diagrams can be used to model object
oriented specifications and designs, however addi-

tional conventions may be needed for this to work
well. Further work is needed to identify all of these

conventions and to integrate them into CASE tools.
Two areas of particular need are tools that will sup-

port the concept of inheritance, and browsers that

can scan reusable software object libraries docu-
mented with data flow diagrams.

[11

121

131

[4]

References

T. DeMarco, Stmctured Analysis and

System Specification, New Jersy:
Prentice-Hall, 1978

P.Ward and S. Mellor, Structured Analysis

for Real-Time Systems, New Jersy:
Prentice-Hall, 1985.

D. Hatley and E. Pirbhai, Strategies for

Real-Time System Specifications, New
York: Dorset House, 1987.

S. Mellor and S. Shlaer, Object Oriented

System Analysis, New Jersy:
Prentice-Hall, 1988.

J.F. Buser

Software Development Concepts
5 of 22

THE VIEWGRAPH MATERIALS

FOR THE

J. F. BUSER PRESENTATION FOLLOW

P.AGE _, INTENTIONAELY BLANK

Representing Object Oriented

Specifications and Designs

with

Extended Data Flow Notations

by

Jon Franklin Buser

Paul T Ward

i_t_,INT£NTfONA_Y BLANK

J.F. Buser

Software Development Concepts
9 of 22

Software Development Concepts Background
Information

• Real-Time Data Flow Diagram Extensions

• Develop Courses and Teach Real-Time
Specification and Design Methods

• Work with CASE vendors

• Continued Research into Real-Time Development
and Object-Oriented Methods

J.F. Buser

Software Development Concepts
I0 of 22

Goal

Develop ways to represent object oriented designs
and specifications with Data Flow Diagram based
notations.

J.F. Buser

Software Development Concepts
11 of 22

Advantages of Data Flow Diagrams

• Supported by many CASE tools

• NOT specific to any computer language or
operating system

• Many Software Engineers already have a working
understanding

J.F. Buser

Software Development Concepts
12 of 22

Data Flow Problems

• CASE tool enforced unique names conflict with
component reuse

• Level-Balancing conflicts with building general
reusable components that have unused access
functions

• Commonly used partitioning strategies do NOT
reinforce the concept of Software Objects

J.F. Buser

Software Development Concepts
13 of 22

The Data Storage and Reporting System

System

User

User Input

Menus

Reports

J.F. Buser

Software Development Concepts
14 of 22

Data Storage and Reporting System

Detailed View

User

ut

K_cnii:_FlYld

/ Menu

port

Selection Data

Record

Key Field +

Data Record

Stored Data

Field

J.F. Buser

Software Development Concepts
15 of 22

Data Storage and Reporting System

Functional Partitioning

User

Input

F

Menus

Anage __

taag e

Records

Data

Records

Reports

Stored Data

J.F. Buser

Software Development Concepts
16 of 22

Objects in the Data Storage and Reporting System

• Data Store Object

• Report Object

• User Interface Object

J.F. Buser
Software Development Concepts
17 of 22

The Data Store Objects grouped together

IData Key
Record Field

Data

_J Record

J.F. Buser

Software Development Concepts
18 of 22

New Partitioning Conventions

for Representing Objects

• Group together processes that operate on the same
real-world objects

• Group together Data Flows that are associated with
the same process or access routine

• Name the combined flow for the access routine that
it is attached to

• Use double arrow head if the flow is composed of
both input and output flows

J.F. Buser

Software Development Concepts
19 of 22

The Data Store Object

New _ + Record

Record

<_
Read

Record

Add New Record =

Input Key + Input Data Record

Update Record =

Input Key + Input Data Record

Read Record =

Input Key + Output Data Record

J.F. Buser

Software Development Concepts
20 of 22

Object Oriented View of the

Data Storage and Reporting System

UIO •
Terminal

Interface

DSO.
Add
New

Record

RO.

DSO •
Read

Record

DSO •

Update
Record

q------_/Dat'a_

DSO.
Read
Record

J.F. Buser
Software Development Concepts
21 of 22

Future Work

• Work further with these conventions

• CASE tools to support reuse and inheritance

• Browsers to scan libraries of reusable components
documented with Data Flow Diagrams

J.F. Buser

Software Development Concepts
22 of 22

